³ . -

г 2010
72
, ʲ
ֲ IJ IJв
ij $F(z)=\sum\limits_{n=0}^{+\infty} a_{n}e^{z\lambda_{n}}$, , $\{\lambda_n\colon n\ge 0\}\subset \mathbb{R}_{+},$ , $\ln M(x,F)\sim\ln\mu(x,F)$ $x\to +\infty$ $(x\notin E,\ \int_E d\ln x<+\infty),$ $M(x,F)=\sup\{|F(x+iy)|\colon y\in\mathbb{R}\},$ $\mu(x,F) = \max\{|a_n|e^{x\lambda_n} \colon n\ge 0\}$ $(x\in\mathbb{R})$.
PDF , ʲ @nbsp
small logo
©2003-2009 |