³ . -

г 2011
74
,
² Ҳ ˲ Ѳ ˲ί ֲ
${ \mathbb{C $ $f_1$, ${ $ $f_2$ $\rho \in \left( {2 - \arctg 2\, / \pi ;\;2 \right)$ ' , $N\left( {r,0,f_1 \right) \le N\left( {r,0,f_2 \right)$, $N\left( {r,\infty,f_1 \right) \le N\left( {r,\infty,f_2 \right)$ $r \ge 0$ $T\left( {r,f_1 \right)> T\left( {r,f_2 \right)$ $r$. $\rho \in [1;2 - \arctg 2\, / \pi ]$.
PDF , @nbsp
small logo
©2003-2009 |