³ . -

г 2007
67
в
˲Ͳί ˲ί вֲί вҲ Ͳ ̲ Ҳ
$\Om\subset \RR^n$ -- , $ \Om_\tau=\{(x,t) \; : \; x\in \Om, \; t=\tau\}$, $Q_{t_1,t_2}=\Om\times(t_1,t_2)$, $p\in (1;2)$, $ \mathcal{K}\subset L^p(0,T;W_{\loc}^{1,p}(\overline{\Om}))\cap L_{\loc}^2(\overline{Q_{0,T}}) $ -- . $ \intl_{Q_{0,\tau}} \big[ v_t(v-u)\psi +\suml_{i=1}^n a_i|u_{x_i}|^{p-2}u_{x_i}[(v-u)\psi]_{x_i} +(cu-f)(v-u)\psi + \frac12\psi_{t}|v-u|^2 \big] dxdt \ge \frac12\intl_{\Om_{\tau}} |v-u|^2\psi dx -\frac12\intl_{\Om_0} |v-u_0|^2\psi dx, $ $\tau\in (0,T]$, $\psi\ge 0$ -- $\overline{Q_{0,T}}$ , $v\in \mathcal{K}$, $v_t\in L_{\loc}^2(Q_{0,T})$ -- . $a_1,\ldots,a_n$ $|x|\to \infty$ $a^0(1+|x|^{\nu})$, $a^0,\nu>0$, ( ) ' $u\in \mathcal{K}\cap C([0,T];L_{\loc}^2(\overline{\Om}))$.
PDF в @nbsp
small logo
©2003-2009 |